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Abstract. The lattice dynamics of lithium nitride (Li3N) under high pressure are extensively investigated
to probe its phase transformations by using the pseudopotential plane-wave method within the density
functional theory. A new second order α → α′−Li3N phase transition is identified for the first time. The
newly proposed α′−phase possesses a hexagonal symmetry with four ions in the unit cell having a space
group of P − 3m1. Further enthalpy and phonon calculations support the existence of this phase, which
stabilizes in a narrow pressure range of 2.8 – 3.6 GPa at zero temperature. Upon further compression,
transitions to denser packed phases of β−and γ−Li3N are typical first order. The analysis of the electronic
densities of states suggests that all the high pressure modifications of Li3N are insulators and, interestingly,
the typical behavior of compression is to broaden the band gap.

PACS. 62.50.-p High-pressure effects in solids and liquids

1 Introduction

Lithium nitride, Li3N, is the only known thermodynami-
cally stable alkali metal nitride and is one of the most ionic
of all known nitrides. There have been considerable inter-
ests in the static and dynamic properties of Li3N [1–3].
This material is a superionic conductor via vacancy-
induced Li+ diffusion within the Li2N layers [4–6]. Its po-
tential for use as an electrolyte in Li-based batteries [7],
a hydrogen storage medium [8–11], and a component in
the synthesis of GaN [12] have prompted several studies
including an investigation into its behavior at high pres-
sure [13]. It is known that Li3N crystallizes in a hexag-
onal structure [7,14], α−Li3N, with four ions per unit
cell at ambient conditions. The unit-cell dimensions are
a = 3.648 Å and c = 3.875 Å [15] with the symmetry point
group of D6h (space group P6/mmm). The nitrogen ex-
ists in an anomalous multiply charged (N3−) states [16,17]
which is stable only because of its crystal environment—
a hexagonal bipyramid of Li+ ions. This structure con-
sists of Li2N layers, widely separated and connected by
one lithium atom per unit cell occupying a site between
the nitrogen atoms in adjacent layers [7,14].

At around 0.6 GPa and room temperature, α−Li3N
was observed to transform into a layered hexagonal struc-
ture (β−Li3N, P63/mmc) with BN-like honeycomb LiN
layers [15]. In this structure, every nitrogen ion binds an
additional lithium atom above and below the plane and,
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unlike the Li2N layers in α−Li3N, adjacent LiN layers
are shifted relative to one another. β−Li3N is metastable
at ambient pressure and is typically found mixed with
α−Li3N phase. With increasing pressure a further phase
transition to a cubic structure (γ−Li3N)—Fm 3̄ m at
27.6 GPa [18] — has previously been predicted by a two-
step procedure consisting of an exploration of the energy
landscapes of chemical systems at various pressures using
global optimization techniques, followed by a local opti-
mization with ab initio methods. Recently, it is proved
by Lazicki et al. [19] that β−Li3N indeed transforms to
γ−Li3N, but in the pressure range of 36–45 GPa. The
γ−Li3N phase is uncommonly stable up to at least 200
GPa and quite compressible in this pressure regime, mak-
ing it a good candidate for an internal pressure standard.

In the present work, the lattice dynamics of Li3N
within the three polymorphs (α−, β−, and γ−phases)
have been extensively studied through ab initio calcula-
tions to understand the physically driven mechanisms of
the phase transitions.

2 Theoretical methods

Pseudopotential plane-wave ab initio calculations are car-
ried out within the framework of density functional the-
ory [20], through the Quantum-ESPRESSO package [21].
The generalized gradient approximation (GGA) exchange-
correlation functional is employed [22]. The Troullier-
Martins [23] norm-conserving scheme is used to generate
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the pseudopotentials for Li and N with the valence con-
figurations of 2s1, and 2s22p3, respectively. A nonlinear
core-correction to the exchange-correlation energy func-
tional for Li is introduced to compensate the incomplete
description of valence states within 2s electrons. The core
radii of 2.0 a.u. and 1.2 a.u. for Li and N, respectively, are
chosen to be sufficiently small to guarantee the core non-
overlapping under compression in this study. Convergence
tests give the choices of the kinetic energy cutoff Ecutoff

of 110 Ry and 8×8×6, 12×12×12, 8×8×4, and 8×8×8
Monkhorst-Pack [24] (MP) k grids for α−, α′−, β−, and
γ−Li3N phases in the electronic Brillouin zone (BZ) in-
tegration, respectively. As a consequence, the calculated
total energy is well converged within 1.0 × 10−3 Ry/f.u.
The phonon frequencies are calculated using the density
functional linear-response method [25–27]. Through this
approach, the dynamical matrices are calculated by de-
termining the static linear response of the electrons for a
periodic lattice perturbation. The 8× 8× 6, 12× 12× 12,
12 × 12 × 6, and 10 × 10 × 10 MP k meshes used in the
phonon calculations ensure the convergence of phonon fre-
quencies within 0.01 THz, and the 4 × 4 × 3, 4 × 4 × 4,
4×4×2, and 4×4×4 q meshes for the four polymorphs, re-
spectively, are employed to interpolate the force constants
in deriving the phonon dispersion curves.

3 Results and discussions

The theoretical equilibrium lattice constant is determined
by fitting the total energy as a function of volume to the
Murnaghan equation of state (EOS) [28]. The calculated
values for equilibrium lattice parameters and bulk mod-
ulus, together with other calculations [13,19] and the ex-
perimental results [15,19] are listed in Table 1. It is clear
that the calculated lattice constants and bulk modulus
are in good agreement with the experimental data within
3%, supporting the choices of our pseudopotentials and
the GGA for the studied systems.

Figure 1 shows the calculated phonon dispersion curves
of α−Li3N and the projected phonon density of states
(PPDOS) at different volumes. The experimental neutron
inelastic scattering data (solid squares and triangles) are
also shown for comparison. Besides, we explicitly present
the calculated phonon frequencies of α−Li3N at several
special q points (e.g., Γ, K, M , and A) at zero-pressure
to compare with the experimental data [29] in Table 2.
It is found that the agreement between our results and
the experimental data is excellent, except for the slight
deviations in one optical phonon mode. With the addi-
tion of the nonanalytic term to the dynamical matrix, the
longitudinal optic (LO) branch and the transverse optic
(TO) branch split from each other at the Γ point, and this
is also shown. It should be noted that the LO-TO split-
ting depends upon the direction in which one approaches
the Γ point [31] and the amplitude of the splitting can
be characterized by the Born effective charges tensor and
the dielectric tensor, which show anisotropic characters in
the case of α−Li3N. This leads to different behaviors of
LO-TO splitting at the directions of Γ − M and Γ − A.

Table 1. Calculated equilibrium lattice parameters a and c
(Å), bulk modulus B0 (GPa), and the pressure derivative of
bulk modulus B′

0 for different high pressure phases of Li3N.
Other calculations from references [13] and [19] and experi-
mental results from references [15] and [19] are also shown for
comparison.

a(Å) c(Å) B0(GPa) B′
0

α−Li3N

This work 3.534 3.772 58.944 3.815

Expt.15 3.648 3.875

reference 13 3.508 3.745 61.02 3.70

β−Li3N

This work 3.445 6.148 74.503 3.412

Expt.15 3.552 6.311

reference 13 3.418 6.100 78.166 3.77

γ−Li3N

This work 4.870 77.096 3.541

Expt.19 4.976 78 4.2

reference 19 4.995 73.1 3.85

Fig. 1. The calculated phonon frequencies (left panel) and
projected phonon density of states (right panel) of α−Li3N at
different volumes. The experimental phonon dispersion data
(symbols) from reference [29] are also shown for comparison.
Solid and dashed lines in the right panel are the vibrational
contributions from N and Li atoms, respectively.

It is noteworthy that the calculated phonon frequency of
∼2.08 THz for the optical (B2g) mode at the zone cen-
ter (Γ point) is in a good agreement with the anisotropic
shell-model result of ∼3.8 THz by Kress et al. [29], how-
ever, significantly lower than that of 12.11 THz calculated
also by the shell model method but without including the
long-range Coulomb interactions between N and Li ions by
Chandrasekhar et al. [30]. This large discrepancy reflects
the importance of the inclusion of the long-range Coulomb
interaction in the phonon calculations. It is interesting to
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Table 2. Calculated phonon frequencies (in THz unit) at the Γ, K, M , and A points of the Brillouin zone of α−Li3N at zero
pressure to compare with the experimental data (in curly brackets) from reference [29]. Since there are nine optical modes, it
is not desirable to explicitly present the assignment of the particular modes.

Phonon modes ω(Γ ) ω(K) ω(M) ω(A)

Acoustic

TA1 ... 6.15 4.06 {3.57} 3.72 {3.16}
TA2 ... 7.39 7.12 {7.19} 3.72

LA ... 8.14 7.33 3.84

Optical

2.08 8.14 8.47 7.79 {8.15}
9.96 {9.52} 8.50 9.43 {9.29} 8.82 {8.87}
10.23 {10.11} 8.50 9.78 8.82 {8.87}
11.05 {12.13} 12.12 {12.84} 10.62 10.94 {11.85}
14.70 {15.12} 12.12 {12.84} 11.11 {11.14} 10.94 {11.85}
16.03 15.20 14.78 16.96

17.74 {18.02} 15.20 17.89 17.70

17.74 {18.02} 18.56 18.57 17.70

18.78 {19.28} 19.87 18.78 17.91

note that the PPDOS results suggest a strong coupling
feature between Li and N atomic vibrations as expected
by their similar atomic masses.

With decreasing volume, the B2g mode at the Γ point
decreases in frequency. At a volume of 0.938 V0 (V0, ex-
perimental equilibrium volume), the B2g mode softens to
be imaginary, plotted as negative, signaling a structural
instability in α−Li3N. The variation of the frequency of
the B2g mode with volume is depicted in Figure 2a. The
squared phonon frequencies for the B2g branch at the Γ
point with pressure P are also plotted in the inset of
Figure 2a. A near perfect linear relation between ν2 and
P is obtained. Such a behavior is consistent with the Lan-
dau theory of pressure-induced soft mode phase transi-
tions [32,33]. The transition pressure corresponding to the
zero phonon frequency is estimated to be 1.8 GPa from
Figure 2a.

Through the analysis of the eigenvector for the soft-
ening B2g mode, it is found that only the Li+ ions of
the Li2N layers vibrate parallel to the [0001] direction as
shown in the inset of Figure 2b. The stable high pressure
phase can be explored by searching for the global energy
minimum in the subspace spanned by the eigenvectors of
the unstable mode and the additional degrees of freedom
(e.g., the strain tensor) induced by the symmetry lower-
ing due to the unstable mode. Based on the eigenvector of
the softened B2g mode, we distorted the original hexago-
nal α−Li3N structure to find the appropriate atomic dis-
placements corresponding to the lowest energy. The total
energy curve in Figure 2b shows that when the external
pressure is beyond around 2.5 GPa, a energy well is formed

from a finite shuffle of (112̄0) planes along the [0001] di-
rection. This distortion transforms the original structure
into another hexagonal phase with a lower symmetry of
P − 3m1. We name this new structure as α′−Li3N de-
picted in the inset of Figure 5b. It is clear that the for-
mation of α′−Li3N is from the out-of-plane distortion of
Li ions within the Li2N layer. The unit cell dimension is
found to be a = 3.5315 Å and c = 3.7716 Å, where Li ions
occupy 1b (0,0,1/2) and 2d (1/3,2/3,z) positions, respec-
tively, while N locates at 1a position of (0,0,0).

The precise and forceful proof on the stability of differ-
ent phases of lithium nitride can be deduced from the pres-
sure dependence of the enthalpy. In the main panel of Fig-
ure 3, the enthalpy curves for β−Li3N and γ−Li3N phases
with respect to the α−Li3N phase are depicted, while the
α′−Li3N phase has been presented in the inset of Figure 3
to make it more distinguishable. It is obvious that the
α−Li3N structure is the most stable ground-state struc-
ture. Above 2.8 GPa α′−Li3N phase becomes energetically
more favorable as indicated in the inset of Figure 3. This
value is in acceptable agreement with the phase transition
pressure of 1.8 GPa predicted by the phonon calculations.
This new phase can stabilize up to 3.6 GPa before it trans-
forms to β−Li3N. At 42 GPa, the γ−Li3N phase is found
to be stable. It is worth noting that the theoretical pres-
sures of 3.6 and 42 GPa for the formations of β−Li3N
and γ−Li3N at zero temperature, respectively, are in sat-
isfactory agreement with the experimental measurements
of 0.6 [15] and 36–45 GPa at room temperature [19]. The
neglect of temperature effects in theory might be mainly
responsible for this discrepancy. Note that the α′−Li3N
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Fig. 2. (Color online) (a) Main figure: Calculated optical B2g phonon frequencies at the Γ point of BZ in α−Li3N as a function
of volume. Solid line through the calculated data points represents the fitted curve using a B-spline. Inset: the calculated
squared phonon frequency ν2 as a function of pressure P . Solid line through the data points is a linear fit. (b) Total energy of
lithium nitrides as a function of the atomic displacement of the unstable B2g phonon mode in α−Li3N structure. Inset shows
the eigenvector of the unstable B2g mode. The atomic displacements are confined in the (112̄0) plane. Only the Li+ ions in the
Li2N layers move along the [0001] direction. The arrows show the directions of atomic displacements. V0 is the experimental
equilibrium volume.

Fig. 3. (Color online) Static stability curves for the
α−, α′−, β− and γ−Li3N structures. Main figure: The en-
thalpy curves of β− and γ−Li3N phases with respect to
α−Li3N structure as a function of pressure. Inset shows the
enthalpy curves of α′− and β−Li3N structures with respect to
α−Li3N phase as a function of pressure.

structure can only stabilize in a narrow pressure region of
2.8–3.6 GPa at zero temperature.

The variations of lattice parameters and the EOS with
pressure for the four polymorphs are presented to compare
with the experimental data (solid black squares and tri-
angles) [15,19] in Figure 4. It is found that the theoretical
volumes and EOS in different Li3N phases are in excellent
agreement with the available experimental data, support-
ing the validity of the theoretical model. Moreover, the
lattice parameters and volume show continuous changes

Fig. 4. (Color online) Pressure dependence of the lattice pa-
rameters (a) and the cell volumes (b) for the α−, α′−, β− and
γ−Li3N structures. Experimental lattice constants and volume
(solid black triangles) of α−Li3N from reference [15] at zero
pressure and experimental EOS data (solid black squares) from
reference [19] for β− and γ−Li3N are also shown.

at the transition of α → α′ phases characterized by the
second-order nature. However, the first order phase tran-
sitions of α′ → β and β → γ are clear by evidence of ob-
vious volume drops at the transition. It should be pointed
out that there is no experimental report on the existence
of α′−Li3N phase. This may be resulted from that the
second-order α → α′ phase transition causes only subtle
structural changes, which is difficult to be detected in the
experiment. To explain this difficulty, we also simulated
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Fig. 5. (Color online) Simulated XRD patterns of (a) α− and
(b) α′−Li3N structures at 5 GPa (λ = 1.5406 Å). Inset: the
crystal structures are shown with the large and small atoms
representing the N and Li ions, respectively.

Fig. 6. (a) The calculated phonon dispersion curve (left
panel) and projected phonon density of states (right panel)
for α′−Li3N at 4 GPa. (b) The calculated phonon dispersion
curve (left panel) and projected phonon density of states (right
panel) for γ−Li3N at 80 GPa.

the X-ray diffraction patterns (XRD) for the two phases
in the Figure 5. It is obvious that the two XRD patterns
are almost identical, except for the slight shift. In real ex-
perimental measures, the shift might be too small to be
clearly observed. The lattice dynamical stability requires
that the energies of phonons must be positive for all wave
vectors in the BZ [32]. To further check the mechanical
stability of the newly proposed α′−Li3N phase, we calcu-
late its phonon dispersion curves and PPDOS, as plotted
in Figure 6a. It is found that no imaginary phonon fre-
quency exists in the whole BZ.

Our ab initio phonon dispersion curves and PPDOS
for the β−Li3N structure at different volumes are shown
in Figure 7. At a volume of 0.71 V0(∼5 GPa), it is obvi-
ously that the TA phonon mode at the K point is unstable

Fig. 7. The calculated phonon frequencies (left panel) and
projected phonon density of states (right panel) for β−Li3N at
different volumes.

Fig. 8. (Color online) Main figure: Calculated TA (K) phonon
frequencies in β−Li3N as a function of volume. Solid line
through the calculated data points represents the fitted curve
using a B−spline. Inset: The eigenvector for the TA soft
phonon mode at K (–1/3,2/3,0) point for β−Li3N. The dis-
placements are all in the plane whose angle with respect to the
(011̄0) plane is 45◦. The arrows show the directions of atomic
displacements.

(Fig. 7a). This fact is understandable since the β−Li3N
structure is not stable in this pressure region. Interest-
ingly, with decreasing volume to 0.54 V0 (∼40 GPa), the
TA phonon branch becomes stable. However, when the
pressure increases further, the whole TA phonon branch
decreases in frequency. At a volume of 0.49 V0 (∼60 GPa),
the TA phonon frequency at the K (–1/3,2/3,0) point be-
come imaginary, signifying the structural instability in the
β−Li3N phase. The schematic representation of eigenvec-
tors for the soft TA phonon mode at the K point is shown
in the inset of Figure 8. All the ions at the (112̄0) plane
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are projected to the particular plane depicted in Figure 8,
which forms an angle of 45◦ with the (011̄0) plane. In
this plane, the N ions at the 2c position (1/3, 2/3, 1/4)
are fixed, but the Li ions at the 2b (0, 0, 1/4) and 4f
(1/3, 2/3, z) positions vibrate along and perpendicular to
the [0001] direction, respectively. With an effort to find the
phase transition path of β → γ, we also intended to ex-
plore the local energy minimum by displacing the atoms
along the eigenvectors of the softening TA (K) phonon
mode. In contrast to that in the distortion of the softening
B2g mode of α−Li3N (Fig. 2b), we could not find the ap-
propriate energy well. As a consequence, we failed to reveal
the γ−Li3N structure based only on the information of the
phonon softening in β−Li3N. This fact indicates that the
phase transition of β → γ is not induced independently by
the phonon instability. In fact, this behavior is not surpris-
ing if one considers the first order phase transition nature
of β → γ. From the Landau theory, an independent soft-
phonon driven phase transition renders a second order na-
ture. While soft phonon could also drive a first order phase
transition, but the strength of coupling to strain and other
phonon modes becomes significant [34]. A full description
of these couplings is, thus, necessary to fully understand
the β → γ phase transition. Unfortunately, this kind of
calculation still remains a major challenge and beyond
the scope of this work. Figure 8 shows the variation of
the frequency of the TA (K) branch with volume. The es-
timated transition pressure for phonon softening to zero
frequency is 57 GPa, which is somewhat larger than the
experimental transition pressure of 36–45 GPa. This fact
is understandable since the transition pressure for phonon
softening to zero is an upper limit.

Figure 6b presents the calculated phonon dispersions
and the PPDOS for the γ−Li3N structure at a volume of
0.4162 V0(∼80 GPa). No imaginary phonon frequency is
observed in the whole BZ to support the dynamical sta-
bility of this phase. Notably, all the phonon modes harden
with increasing pressure up to 120 GPa.

The electronic total and partial DOS for the α−, α′−,
β− and γ−Li3N structures at 0, 3, 40, and 50 GPa, re-
spectively, are presented in Figure 9. It is found that all
the phases are insulating. It is a common feature for all
the compounds that the N atom has the dominant contri-
butions to the valence band, signifying an ionic bonding
nature. Moreover, the DOS changes at the α → α′ and
α′ → β transitions are relatively small, but upon entering
γ−Li3N it is dramatic and reflects a direct confirmation
of the quadrupling of the band gap at the phase transi-
tion. To our knowledge, in ionic materials the band gap is
a good measure of the degree of ionicity, while the ionic
materials usually appear metallic with decreasing volume.
Interestingly, Li3N is abnormal; it is found that pressure
is not moving the system toward a metallic system in-
stead the typical behavior is to broaden the band gap.
Previously, it was reported [35] that the positive pressure
derivative of the energy gap in diamond is understandable
in terms of the absence of d occupations in the valence
bands. An increase in the gap from Γ to X with pressure
in the zinc-blende BN [36] might also have the same origin.

Fig. 9. (Color online) Calculated electronic total and partial
densities of states for (a) α−, (b) α′−, (c) β− and (d) γ−Li3N
at 0, 3, 40 and 50 GPa, respectively. Vertical dotted lines in-
dicate the Fermi energy.

Here, in view of the apparent d states shortage in Li3N,
one might expect a similar understanding of the band gap
broadening.

4 Conclusion

In summary, we have investigated the structural phase
transition and electronic properties of Li3N under pressure
through the first-principles calculations. Within the GGA
calculations, we predicted that the α−Li3N will transform
to the hexagonal α′−phase at 2.8 GPa at zero temper-
ature. We invite future experimental XRD and Raman
measurements to verify the existence of this phase. With
increasing pressure, the phase transitions of α′ → β and
β → γ are characterized by the first order nature with
the sharp reduction of volumes at the transformations,
in agreement with experimental results. We show that
the second order phase transition of α → α′ is induced
by phonon instabilities, while the transition of β → γ
may be driven through coupling of unstable modes to
strain. Based on the calculated total and partial DOS,
we conclude that four high pressure forms of Li3N are all
ionic compounds. The typical pressure effect is found to
broaden the energy gap.
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